在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式,微分算子法是求解常系数非齐次线性微分方程特解的有效方法,基于算子多项式的理论,针对二阶常系数线性微分方程,论文给出了非线性项为指数函数、三角函数、幂函数及其混合函数的撤分算子特解公式,实例表明特解公式在解题中具有可应用性、有效性和简捷性。
在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)
第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。
拓展:二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。 自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。
若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
01
1.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0
特征方程r2+pr+q=0的两根为r1,r2 微分方程y”+py’+qy=0的通解
两个不相等的实根r1,r2 y=C1er1x+C2er2x
两个相等的实根r1=r2 y=(C1+C2x)er1x
一对共轭复根r1=α+iβ,r2=α-iβ y=eαx(C1cosβx+C2sinβx)
02
2.1.二阶常系数非齐次线性微分方程解法
一般形式: y”+py’+qy=f(x)
先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)
则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解
求y”+py’+qy=f(x)特解的方法:
① f(x)=Pm(x)eλx型
令y*=xkQm(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Qm(x)的m+1个系数
03
2.2.②f(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]型
令y*=xkeλx[Qm(x)cosωx+Rm(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Qm(x)和Rm(x)的m+1个系数
04
有关微分方程的题目有很多,不可能一一列举出来,但我们可以掌握方法,开拓思维,这样我们的高数才会得以提高。
一阶微分算子,就是求图像灰度变化曲线的导数,能够突出图像中的对象边缘;
二阶微分算子,求图像灰度变化导数的导数,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构
y''+a1y'+a2y=0,其中a1、a2为实常数。对于一元函数来说,如果在该方程中出现因变量的二阶导数,就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。
在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。
以上是问答百科为你整理的5条关于二阶微分算子的问题「什么是微分算子」希望对你有帮助!更多相关二阶微分计算的内容请站内查找。