当前位置:首页 > 军事 > 正文

原子核质量测量团队与合作者基于兰州重离子加速器冷却储存环研发

  记者从中国科学院近代物理研究所获悉,近期,该所原子核质量测量团队与合作者基于兰州重离子加速器冷却储存环,利用国际首创的新型质谱术,精确测量了一批关键原子核的质量,研究了中子星表面的X射线暴,从新的角度约束了中子星的性质。相关结果于北京5月1日发表在《自然—物理》(Nature Physics) 上。

新角度!短寿命原子核质量精确测量揭示中子星性质

  中子星是人类已知的最致密的星体之一。X射线暴发生在中子星与伴星(通常是一颗红巨星)组成的双星系统中,是目前已知的最频繁的天体热核爆发过程,也是太空望远镜所能观察到的最亮的天文现象之一。中子星强大的引力将伴星中富含氢和氦的燃料吸积到中子星的表面。当这些燃料的温度和密度达到一定程度时,热核反应会被点燃,在10—100秒时间内释放出大量能量,形成X射线暴。X射线暴为研究中子星性质提供了窗口。

  快速质子俘获过程是驱动X射线暴的主要热核反应之一,涉及一系列远离稳定线的短寿命缺中子原子核。其中,锗—64扮演着非常重要的角色,被科学家称之为“等待点核”。“锗—64就像是核过程路径上的一个‘十字路口’,是核反应进行到中等质量核区时遇到的一个重要的拥堵路段,其附近的原子核质量决定着核反应的走向和能量释放”,论文第一作者、近代物理所博士生周旭解释说。

  因此,精确测量锗—64附近原子核的质量,对深入理解X射线暴和确定中子星性质非常重要。然而由于这些原子核的产额极低、寿命很短,测量难度大,多年来国际上一直未能突破。

  历经十余年努力,近代物理所质量测量团队基于兰州重离子加速器冷却储存环研发了新一代等时性质谱术,并将其命名为“磁刚度识别的等时性质谱术”。近代物理所王猛研究员介绍:“我们实验中用的是首创的新型质谱术,具有高精度、单离子灵敏、高效率、短测量时间、无背景污染等优点,是目前国际上最先进的短寿命、低产额原子核质量测量方法之一。”

  利用新型质谱术,研究团队精确测量了砷-64、砷-65、硒-66、硒-67、锗-63等原子核的质量,从而在实验上首次确定了等待点核锗—64相关的所有核反应能。其中,砷-64和硒-66的质量是国际上首次测量,其他原子核的质量精度均得到提高。

  通过研究新的原子核质量结果对X射线暴和中子星性质的影响,团队发现新的结果使快速质子俘获过程发生了变化,X射线光度曲线峰值增加、尾部持续时间延长。对比目前天文观测数据最丰富的、代号为GS 1826-24中子星的X射线暴,团队发现该中子星与地球之间的距离更远(需增加6.5%)、中子星表面引力红移系数需要降低4.8%。中子星表面引力红移系数的上述变化意味着中子星密度比预想的要低一些,而X射线暴后中子星外壳的温度会比通常认为的更高。

  近代物理所张玉虎研究员介绍:“中子星的质量和半径间的关系是学界非常关心的一个重要前沿课题,可通过天文观测、重离子碰撞等不同方式进行研究。我们通过原子核质量测量得到更精确的X射线曝光度曲线,和天文观测比较,从新的角度约束了中子星的质量和半径的关系。”

  (总台央视记者 褚尔嘉)