小学六年级上册数学思维题及答案解析,分类整理大全!

六年级数学思维题及答案

1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?

解:

设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392

2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?

解:设一张电影票价x元

(x-3)×(1+1/2)=(1+1/5)x

(1+1/5)x这一步是什么意思,为什么这么做

(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}

左边算式求出了总收入

(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}

如此计算后得到总收入,使方程左右相等

3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款

答案

取40%后,存款有

9600×(1-40%)=5760(元)

这时,乙有:5760÷2+120=3000(元)

乙原来有:3000÷(1-40%)=5000(元)

4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?

答案

加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,

巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍

增加了3-1.5=1.5倍,说明30颗占1.5倍

奶糖=30/1.5=20颗

巧克力=1.5*20=30颗

奶糖=20-10=10颗

5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?

答案

小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份

4*1/6=2/3 (小明要给小亮2/3份玻璃球)

小明还剩:4-2/3=3又1/3(份)

小亮现有:3+2/3=3又2/3(份)

这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)

小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4

三人共同搬完,需要

60 × 2÷(6+ 5+ 4)= 8(小时)

甲需丙帮助搬运

(60- 6× 8)÷ 4= 3(小时)

乙需丙帮助搬运

(60- 5× 8)÷4= 5(小时)

7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

答案

甲乙丙3人8天完成 :5/6-1/3=1/2

甲乙丙3人每天完成 :1/2÷8=1/16,

甲乙丙3人4天完成 :1/16×4=1/4

则甲做一天后乙做2天要做 :1/3-1/4=1/12

那么乙一天做 :[1/12-1/72×3]/2=1/48

则丙一天做 :1/16-1/72-1/48=1/36

则余下的由丙做要 :[1-5/6]÷1/36=6天

答:还需要6天

8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?

答案

10.65*1%=0.1065(元) 10.65*2%=0.213(元)

10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)

13.86*1%=0.1386(元) 13.86*2%=0.2772(元)

0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)

14.2758-10.9695=3.3063(元)

答:老王卖出这种股票一共赚了3.3063元.

9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少

答案

(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助

一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人

解: 设需要增加x人

(40+x)(15-3)=40*15

x=10

所以需要增加10人

10.仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?

解:第1次运走:2/(2+7)=2/9.

64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。

11.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?

答案

原来达标人数占总人数的

3÷(3+5)=3/8

现在达标人数占总人数的

9/11÷(1+9/11)=9/20

育才小学共有学生

60÷(9/20-3/8)=800人

12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?

答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c

c-a=72

解得a=24 b=36 c=96

13.甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个

6X=5(242-X)

X=110

242-110=132(个)

答:甲做了110个,乙做了132个

14.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比

答案

设男会员是3N,则女会员是2N,总人是:5N

甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2

乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N

丙级有:5N*7/25=7/5N

丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N

那么丙组中男女之比是:N/2:9/10N=5:9

15.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案

根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份

每份需要的人数:(60+40)÷20=5人

甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人

乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人

丙村需要的人数:5×5=25人 或 20+5=25人

每人应得的钱数:1350÷25=54元

甲村应得的工钱:54×20=1080元

乙村应得的工钱: 54×5=270元

16.(1)李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案

设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x

则0.1X=2aX a=0.05

(2)哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?

解:设哈利波特答对2X题,答错X题

20×2X-6X=68

40X-6X=68

34X=68

X=2

答对:2×2=4题

共有:4+2=6题

17.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案

设可免费携带的重量为x kg,则:

(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;

解方程:x=30

18.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?

答案

解法一:

设船数为X,则

(15X+9)/18=X-1

15X+9=18X-18

27=3X

X=9

答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船

8+1=9只船

19.建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?

答案

设2堆为X吨,则一堆为X+85吨

X+85-30=2(X-30)

x=115(2堆)

x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几

答案

六个数分别是46 47 48 96 97 98

20.甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案

两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8

有x÷120=1

所以x=120

21.一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?

设有x个人

x+x/2+x/3=55

x=30

22.学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?

设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本

x+2x+3x-120=840

6x-120=840

6x=840+120

6x=960

x=960/6

x=160

高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)

答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

23.学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?

解 设 原来田径队男女生一共x人

1/3x+6= 4/9(x+6)

x=30

1/3x+6=30*1/3+6=16

女生16人

24.小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?

解:设小华的有x本书

4(x+2)=6x+2

4x+8=6x+2

x=3

6x=18

25.小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?

答案

(1)设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁

x+x+27+4x+54+4x+16=147,x=5

所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

(2)爷爷+爸爸+(妈妈+小春)

=爷爷+(爷爷-38)+(爷爷/2)=147

爷爷=74岁

爸爸=36岁

妈妈+小春=小春+27+小春=74/2=37

小春=5岁

妈妈=5+27=32岁

小春一家四口人的年龄各是74,36,32,5岁

(3)、(147+38)÷(2×2+1)=37(岁)

36×2=74(岁) 爷爷的年龄

74-38=36(岁) 爸爸的年龄

(37+27)÷2=32(岁) 妈妈的年龄

32-27=5(岁) 小华的年龄

26.甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。

0.2 x=(22-x)×0.25-1

0.2x=5.5-0.25x-1

0.45x=4.5

x=10

22-10=12(人)

答: 甲校有10人参加,乙校有12人参加。

27.在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?

答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:

(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2

设原有溶液为x千克,加入y千克盐后,浓度变为50%

由题意,得溶质为40%x,则有

40%x/(x+5)=30%

解之得

x=15千克

则溶质有15*40%=6千克

由题意,得

(6+y)/(15+5+y)=50%

解之得

y=8千克

故再加入8千克盐,浓度变为50%

28.某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?

答案

红笔买了x支。

(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8

x=36.

29.甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?

答案

乙的话表明:甲钱5倍与乙钱2/3一样多

所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,

而乙多于甲的6倍,

所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15

设乙=90,甲=90*2/3÷5=12,90+12100,不行

所以,三人原来:甲10元,乙75元,丙15元

30.某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

答案

设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。

列式:x*0.12+(30-x)*0.14=4

化简:4.2-0.02x=4

0.02x=0.2

解得:x=10(万元)

31.某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?

答案1

根据题意,

甲种超过了100本,乙种不到100 本

甲乙花的总钱数比为2:1

那么甲打折以前,和乙的总钱数比为:

(2÷0.9):1=20:9

甲乙册数比为5:3

甲乙单价比为(20÷5):(9÷3)=4:3

优惠前,甲种每本:1.5×4/3=2元

答案2

答案

设甲买了x本,则乙为3/5x,x100

买乙共付了:3/5x*1.5=0.9x元

则甲共付了:0.9x*2=1.8x元

所以甲优惠后每本为:1.8x/x=1.8元

则优惠前:1.8/0.9=2元

32.两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?

答案

两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的

A蜡烛,两小时烧完,那么每小时燃烧1/2

B蜡烛,三小时烧完,那么每小时燃烧1/3

设过了x小时以后,B蜡烛剩余的部分是A的两倍

2(1—x/2)=1—x/3

解得x=1.5

由于是6点半开始的,所以到8点的时候刚刚好

33.学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路

答案1

设走的平路是X公里 山路是Y公里

因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时

Y/3-Y/6=1小时

Y=6公里

去时共用3.5小时 则X/4+Y/3=3.5 X=6

所以总路程为2(6+6)=24km

答案2

解:春游共用时:7:00-1:00=6(小时)

上山用时:6-2.5=3.5(小时)

上山多用:3.5-2.5=1(小时)

山路:(6-3)×1÷(3÷6)=6(千米)

下山用时:6÷6=1(小时)

平路:(2.5-1)×4=6(千米)

单程走路:6+6=12(千米)

共走路:12×2=24(千米)

答:他们共走24千米。

工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

解:

1/20+1/16=9/80表示甲乙的工作效率

9/80×5=45/80表示5小时后进水量

1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满

答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天

1/20*(16-x)+7/100*x=1

x=10

答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

解:由题意可知

1/甲+1/乙+1/甲+1/乙+……+1/甲=1

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1

(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)

得到1/甲=1/乙×2

又因为1/乙=1/17

所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

答案为300个

120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?

答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36 表示甲每分钟进水

最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

答案为6天

解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

乙做3天的工作量=甲2天的工作量

即:甲乙的工作效率比是3:2

甲、乙分别做全部的的工作时间比是2:3

时间比的差是1份

实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1

解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?

答案为40分钟。

解:设停电了x分钟

根据题意列方程

1-1/120*x=(1-1/60*x)*2

解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?

解:

4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?

4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只

100-62=38表示兔的只数

数字数位问题

容斥原理问题

1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )

A 43,25 B 32,25 C32,15 D 43,11

解:根据容斥原理最小值68+43-100=11

最大值就是含铁的有43种

2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )

A,5 B,6 C,7 D,8

解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123

由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①

由(2)知:a2+a23=(a3+ a23)×2……②

由(3)知:a12+a13+a123=a1-1……③

由(4)知:a1=a2+a3……④

再由②得a23=a2-a3×2……⑤

再由③④得a12+a13+a123=a2+a3-1⑥

然后将④⑤⑥代入①中,整理得到

a2×4+a3=26

由于a2、a3均表示人数,可以求出它们的整数解:

当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22

又根据a23=a2-a3×2……⑤可知:a2a3

因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?

答案:及格率至少为71%。

假设一共有100人考试

100-95=5

100-80=20

100-79=21

100-74=26

100-85=15

5+20+21+26+15=87(表示5题中有1题做错的最多人数)

87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)

100-29=71(及格的最少人数,其实都是全对的)

及格率至少为71%

六.抽屉原理、奇偶性问题

1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?

答案为21

解:

每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.

当有11人时,能保证至少有2人取得完全一样:

当有21人时,才能保证到少有3人取得完全一样.

3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?

解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是:

6*4+10+1=35(个)

如果黑球或白球其中有等于7个的,那么就是:

6*5+3+1=34(个)

如果黑球或白球其中有等于8个的,那么就是:

6*5+2+1=33

如果黑球或白球其中有等于9个的,那么就是:

6*5+1+1=32

4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)

不可能。

因为总数为1+9+15+31=56

56/4=14

14是一个偶数

而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。

七.路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

解:

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。

根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。

可以得出马与狗的速度比是21x:20x=21:20

根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。

解:

600÷12=50,表示哥哥、弟弟的速度差

600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

600÷100=6分钟,表示跑的快者用的时间

600/50=12分钟,表示跑得慢者用的时间

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。

解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:y=5:4

得x=1/72 y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

解:(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

时间比为3:4

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

解:

把路程看成1,得到时间系数

去时时间系数:1/3÷12+2/3÷30

返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

end

声明:本文内容来源于网络,请联系原出处。封面图片来自邑石网。奥数网尊重版权,如有侵权问题,请及时与管理员联系处理。

喜欢就点个“在看”哦~

你可能想看:
标签: 数学
分享给朋友: